Roll	oll No.	Total No. of Pages : 02
Tota	otal No. of Questions : 18	-
	B.Tech. (ME) (2018 Batch) (Sem BASIC ELECTRONICS ENGINEI Subject Code : BTEC305-18 M.Code : 76420	ERING
Tim	ime : 3 Hrs.	Max. Marks : 60
 INSTRUCTIONS TO CANDIDATES : SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions. SECTION-A		
Write briefly :		0
1.	Differentiate between intrinsic and extrinsic semiconductors.	
2.	Draw the reverse bias characteristics of a p-n junction.	

- 3. What do you mean by breakdown diode?
- 4. Why CE configurations widely used in amplifier circuits?
- 5. What is adder www.ming amplifier?
- 6. What do you mean by stabilization?
- 7. Why the input terminals of an op-amp are named as inverting input and non-inverting input?
- 8. Convert $(7D2.1A)_{16}$ to its decimal equivalent.
- 9. Which gates are called used as universal gates and why?
- 10. Convert $(101010.10)_2$ to octal.

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- 11. Explain the phenomenon of formation of depletion layer in the p-n junction.
- 12. A single phase full-wave rectifier uses two diodes, the internal resistance of each being 20%. The transformer rms secondary voltage from center tap to each end of secondary is 50 V and load resistance is 980%. Find :
 - a) The mean load current
 - b) Rms load current
 - c) Output efficiency
- 13. The emitter current \downarrow in a transistor is 3 mA. If the leakage current_{CBO} is 5-A and $\checkmark = 0.95$. Calculate the collector and base current.
- 14. Draw the block diagram of internal construction of op-amp and explain the function of each block in detail.
- 15. Minimize the following using K-map :

 $f(A,B,C,D) = \Delta m(0,2,4,6,8,10,12,14)$

SECTION-C

16. a) Simplify the following Boolean equation and realize the same using a combination of AND, OR, NOR gates :

 $Y \square (\overline{A} \square B) (1 \square \overline{C}) (3 \square$

- b) Explain the construction and working of RS-flip flop.
- 17. a) Show that using Boolean algebra and De Morgan's theorems :

<u>YZ</u> WXZ WXYZ WYZ Z

- b) Explain the working of inverting summer amplifier.
- 18. Write short notes on any two :
 - a) Differentiator
 - b) Voltage divider bias circuit
 - c) Photo diode

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76420

(S2)-977

Download all NOTES and PAPERS at StudentSuvidha.com